
Robotics System Toolbox™

Getting Started Guide

R2017b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Robotics System Toolbox™ Getting Started Guide
© COPYRIGHT 2015 – 2017 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be
used or copied only under the terms of the license agreement. No part of this manual may be photocopied
or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used or
defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails to
meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.
Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History
March 2015 Online only New for Version 1.0 (R2015a)
September 2015 Online only Revised for Version 1.1 (R2015b)
October 2015 Online only Rereleased for Version 1.0.1 (Release

2015aSP1)
March 2016 Online only Revised for Version 1.2 (R2016a)
September 2016 Online only Revised for Version 1.3 (R2016b)
March 2017 Online only Revised for Version 1.4 (R2017a)
September 2017 Online only Revised for Version 1.5 (R2017b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Product Overview
1

Robotics System Toolbox Product Description 1-2
Key Features . 1-2

Robotics System Toolbox Supported Hardware 1-3

Coordinate System Transformations
2

Standard Units for Robotics System Toolbox 2-2

Coordinate Transformations in Robotics 2-3
Axis-Angle . 2-3
Euler Angles . 2-4
Homogeneous Transformation Matrix 2-4
Quaternion . 2-5
Rotation Matrix . 2-5
Translation Vector . 2-6
Conversion Functions and Transformations 2-6

Convert A ROS Pose Message To A Homogeneous
Transformation . 2-8

Robot Operating System (ROS)
3

Robot Operating System (ROS) . 3-2

iii

Contents

Product Overview

• “Robotics System Toolbox Product Description” on page 1-2
• “Robotics System Toolbox Supported Hardware” on page 1-3

1

Robotics System Toolbox Product Description
Design and test algorithms for robotics applications

Robotics System Toolbox provides algorithms and hardware connectivity for developing
autonomous robotics applications for ground vehicles, manipulators, and humanoid
robots. Toolbox algorithms include path planning and path following for differential drive
robots, scan matching, obstacle avoidance, and state estimation. For manipulator robots,
the system toolbox includes algorithms for inverse kinematics, kinematic constraints,
and dynamics using a rigid body tree representation.

The system toolbox provides an interface between MATLAB® and Simulink® and the
Robot Operating System (ROS) that enables you to test and verify applications on ROS-
enabled robots and robot simulators such as Gazebo. It includes examples showing how
to work with virtual robots in Gazebo and with actual ROS-enabled robots.

Robotics System Toolbox supports C++ code generation, enabling you to generate a ROS
node from a Simulink model and deploy it to a ROS network. Support for Simulink
External Mode lets you view signals and change parameters while your deployed model
is running.

Key Features
• Path planning, path following, and map representation algorithms
• Functions for converting between different rotation and translation representations
• Bidirectional communication with live ROS-enabled robots
• Interface to Gazebo and other ROS-enabled simulators
• Data import from rosbag log files
• ROS node generation from Simulink models (with Simulink Coder™)

1 Product Overview

1-2

Robotics System Toolbox Supported Hardware

As of this release, Robotics System Toolbox supports the following hardware. See “Get
Add-Ons” (MATLAB) for information on installing add-ons and support packages. You
can also use roboticsAddons for Robotics System Toolbox add-ons.

Support Package Vendor Earliest Release
Available

Last Release Available

“Robotics System Toolbox
Support Package for
TurtleBot Based Robots”

TurtleBot 2016a Current

View the Hardware Catalog for details on all supported hardware.

 Robotics System Toolbox Supported Hardware

1-3

matlab: matlab.addons.supportpackage.internal.explorer.showSupportPackagesForBaseProducts('VP', 'tripwire');
http://www.turtlebot.com/
http://www.mathworks.com/hardware

Coordinate System Transformations

• “Standard Units for Robotics System Toolbox” on page 2-2
• “Coordinate Transformations in Robotics” on page 2-3
• “Convert A ROS Pose Message To A Homogeneous Transformation” on page 2-8

2

Standard Units for Robotics System Toolbox
Robotics System Toolbox uses a fixed set of standards for units to ensure consistency
across algorithms and applications. Unless specified otherwise, functions and classes in
this toolbox represent all values in units based on the International System of Units (SI).
The table below summarizes the relevant quantities and their SI derived units.
Quantity Unit (abbrev.)
Length meter (m)
Time second (s)
Angle radian (rad)
Velocity meter/second (m/s)
Angular Velocity radian/second (rad/s)
Acceleration meter/second2 (m/s2)
Angular Acceleration radian/second2 (rad/s2)
Mass kilogram (kg)
Force Newton (N)
Torque Newton-meter (N-m)
Moment of Inertia kilogram-meter2 (kg-m2)

See Also

More About
• “Coordinate Transformations in Robotics”

2 Coordinate System Transformations

2-2

Coordinate Transformations in Robotics
In this section...
“Axis-Angle” on page 2-3
“Euler Angles” on page 2-4
“Homogeneous Transformation Matrix” on page 2-4
“Quaternion” on page 2-5
“Rotation Matrix” on page 2-5
“Translation Vector” on page 2-6
“Conversion Functions and Transformations” on page 2-6

In robotics applications, many different coordinate systems can be used to define where
robots, sensors, and other objects are located. In general, the location of an object in 3-D
space can be specified by position and orientation values. There are multiple possible
representations for these values, some of which are specific to certain applications.
Translation and rotation are alternative terms for position and orientation. Robotics
System Toolbox supports representations that are commonly used in robotics and allows
you to convert between them. You can transform between coordinate systems when you
apply these representations to 3-D points. These supported representations are detailed
below with brief explanations of their usage and numeric equivalent in MATLAB. Each
representation has an abbreviation for its name. This is used in the naming of arguments
and conversion functions that are supported in this toolbox.

At the end of this section, you can find out about the conversion functions that we offer to
convert between these representations.

Robotics System Toolbox assumes that positions and orientations are defined in a right-
handed Cartesian coordinate system.

Axis-Angle
Abbreviation: axang

A rotation in 3-D space described by a scalar rotation around a fixed axis defined by a
vector.

Numeric Representation: 1-by-3 unit vector and a scalar angle combined as a 1-by-4
vector

 Coordinate Transformations in Robotics

2-3

For example, a rotation of pi/2 radians around the y-axis would be:

axang = [0 1 0 pi/2]

Euler Angles

Abbreviation: eul

Euler angles are three angles that describe the orientation of a rigid body. Each angle is
a scalar rotation around a given coordinate frame axis. The Robotics System Toolbox
supports two rotation orders. The 'ZYZ' axis order is commonly used for robotics
applications. We also support the 'ZYX' axis order which is also denoted as “Roll Pitch
Yaw (rpy).” Knowing which axis order you use is important for apply the rotation to
points and in converting to other representations.

Numeric Representation: 1-by-3 vector of scalar angles

For example, a rotation around the y -axis of pi would be expressed as:

eul = [0 pi 0]

Note: The axis order is not stored in the transformation, so you must be aware of what
rotation order is to be applied.

Homogeneous Transformation Matrix

Abbreviation: tform

A homogeneous transformation matrix combines a translation and rotation into one
matrix.

Numeric Representation: 4-by-4 matrix

For example, a rotation of angle α around the y -axis and a translation of 4 units along
the y -axis would be expressed as:

tform =
 cos α 0 sin α 0
 0 1 0 4
-sin α 0 cos α 0
 0 0 0 1

2 Coordinate System Transformations

2-4

You should pre-multiply your transformation matrix with your homogeneous
coordinates, which are represented as a matrix of row vectors (n-by-4 matrix of points).
Utilize the transpose (') to rotate your points for matrix multiplication. For example:

points = rand(100,4);
tformPoints = (tform*points')';

Quaternion

Abbreviation: quat

A quaternion is a four-element vector with a scalar rotation and 3-element vector.
Quaternions are advantageous because they avoid singularity issues that are inherent in
other representations. The first element, w, is a scalar to normalize the vector with the
three other values, [x y z] defining the axis of rotation.

Numeric Representation: 1-by-4 vector

For example, a rotation of pi/2 around the y -axis would be expressed as:

quat = [0.7071 0 0.7071 0]

Rotation Matrix

Abbreviation: rotm

A rotation matrix describes a rotation in 3-D space. It is a square, orthonormal matrix
with a determinant of 1.

Numeric Representation: 3-by-3 matrix

For example, a rotation of α degrees around the x-axis would be:

rotm =

 1 0 0
 0 cos α -sin α
 0 sin α cos α

You should pre-multiply your rotation matrix with your coordinates, which are
represented as a matrix of row vectors (n-by-3 matrix of points). Utilize the transpose (')
to rotate your points for matrix multiplication. For example:

 Coordinate Transformations in Robotics

2-5

points = rand(100,3);
rotPoints = (rotm*points')';

Translation Vector
Abbreviation: trvec

A translation vector is represented in 3-D Euclidean space as Cartesian coordinates. It
only involves coordinate translation applied equally to all points. There is no rotation
involved.

Numeric Representation: 1-by-3 vector

For example, a translation by 3 units along the x -axis and 2.5 units along the z -axis
would be expressed as:

trvec = [3 0 2.5]

Conversion Functions and Transformations
Robotics System Toolbox provides conversion functions for the previously mentioned
transformation representations. Not all conversions are supported by a dedicated
function. Below is a table showing which conversions are supported (in blue). The
abbreviations for the rotation and translation representations are shown as well.

The names of all the conversion functions follow a standard format. They follow the form
alpha2beta where alpha is the abbreviation for what you are converting from and

2 Coordinate System Transformations

2-6

beta is what you are converting to as an abbreviation. For example, converting from
Euler angles to quaternion would be eul2quat.

All the functions expect valid inputs. If you specify invalid inputs, the outputs will be
undefined.

There are other conversion functions for converting between radians and degrees,
Cartesian and homogeneous coordinates, and for calculating wrapped angle differences.
For a full list of conversions, see “Coordinate System Transformations”.

See Also

More About
• “Standard Units for Robotics System Toolbox”

 See Also

2-7

Convert A ROS Pose Message To A Homogeneous
Transformation

This model subcribes to a Pose message on the ROS network. Use bus selectors to
extract the rotation and translation vectors. The Coordinate Transformation Conversion
block takes the rotation vector (euler angles) and translation vector in and gives the
homogeneous transformation for the message.

Connect to a ROS network. Create a publisher for the '/pose' topic using a
'geometry_msgs/Pose' message type.

rosinit
[pub,msg] = rospublisher('/pose','geometry_msgs/Pose');

Initializing ROS master on http://bat5823win64:54330/.
Initializing global node /matlab_global_node_93055 with NodeURI http://bat5823win64:54334/

Specify the detailed pose information. The message contains a translation (Position)
and quaternion (Orientation) to express the pose. Sned the message via the publisher.

msg.Position.X = 1;
msg.Position.Y = 2;
msg.Position.Z = 3;
msg.Orientation.X = sqrt(2)/2;
msg.Orientation.Y = sqrt(2)/2;
msg.Orientation.Z = 0;
msg.Orientation.W = 0;

send(pub,msg)

Open the 'pose_to_transformation_model' model. This model subscribes to the '/
pose' topic in ROS. The bus selectors extract the quaternion and position vectors from
the ROS message. The Coordinate Transformation Conversion block then converts the
position (translation) and quaternion to a homogeneous transformation.

For more details, inspect the bus selector in the model to see how the message
information is extracted.

open_system('pose_to_transformation_model.slx')

2 Coordinate System Transformations

2-8

Run the model to display the homogeneous transformation.

Modify the position or orientation components of the message. Resend the message and
run model to see the change in the homogeneous transformation.

msg.Position.X = 4;
msg.Position.Y = 5;
msg.Position.Z = 6;
send(pub,msg)

 Convert A ROS Pose Message To A Homogeneous Transformation

2-9

Shutdown the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_93055 with NodeURI http://bat5823win64:54334/
Shutting down ROS master on http://bat5823win64:54330/.

2 Coordinate System Transformations

2-10

Robot Operating System (ROS)

3

Robot Operating System (ROS)
Robot Operating System (ROS) is a framework of tools, libraries, and software to aid in
robot software development. It is a flexible system for programming robots and
controlling robotic platforms. ROS was developed by an open-source collaborative
community to help grow the world of robotics. Applications for working with hardware,
robotic simulation models, path planning, localization and mapping, and many other
algorithms are available. For an introduction to ROS, see the ROS Introduction on their
website.

For more information about ROS and its functionality, see the ROS Website and the ROS
Wiki. The wiki contains documentation and tutorials for ROS, software packages, core
libraries, and supported robots and hardware.

Robotics System Toolbox allows you to access ROS functionality in MATLAB. Use
MATLAB to communicate with a ROS network, interactively explore robot capabilities,
and visualize sensor data. You can develop robotics applications by exchanging data with
ROS-enabled robots and robot simulators such as Gazebo. You can also create Simulink
models that exchange messages with a ROS network. Verify your model within the
Simulink environment by receiving messages from, and sending messages to, ROS-
enabled robots and robot simulators. From your model, you can also generate C++ code
for a standalone ROS application.

Both MATLAB and Simulink support the TCPROS transport layer (see TCPROS). The
UDPROS transport is not supported.

Robotics System Toolbox supports ROS Indigo and Hydro platforms, but your own ROS
installation may have different message versions. If you would like to overwrite our
current message catalog, you can utilize the “Custom Message Support” to generate new
message definitions.

The first thing to do when working with ROS is to set up or connect to a ROS network.
Here is a link to an explanation of the ROS network setup and some examples to get
started using ROS in MATLAB and Simulink:

MATLAB

• “ROS Network Setup”
• “Get Started with ROS”
• “Connect to a ROS Network”

3 Robot Operating System (ROS)

3-2

http://wiki.ros.org/ROS/Introduction
http://www.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/ROS/TCPROS

Simulink

• “Get Started with ROS in Simulink®”
• “Configure ROS Network Addresses”
• “Connect to a ROS-enabled Robot from Simulink®”

 Robot Operating System (ROS)

3-3

